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1.  Introduction 

 

Every project for long-distance natural gas transportation through pipelines must comply with 
basis parameters, such as flow, input pressure at the pipeline start point, minimum discharge 
pressure at the pipeline delivery point, route along which the pipeline will be laid (flatlands, 
mountain ranges, subsea lines, etc.), and any other conditions set forth in the design basis. 

With these foundations and with the relevant mathematical formulas and calculation 
software, the suitability of the project for the transportation of the required natural gas flow at 
the pressure foreseen in the design basis is ensured. However, this is not enough, since this 
calculation method gives no indication of transportation costs. 

The key objective of this type of project is to transport gas at a “minimum cost”, and the 
methodology frequently used does not result in a minimum cost project, which we shall call 
“optimum project”. 

The fact that we are looking for a minimum cost makes us evaluate the cost of all the 
components which comprise the gas pipeline, maintenance costs, and the  cost relative to 
the energy required to operate the compressor stations, as well as all other costs inherent to 
the system during its previously defined life cycle.  

Natural gas being a compressible fluid is clearly more suitable for pipeline transportation at a 
very high pressure, thus resulting in a smaller pipeline diameter, which, in turn, means lower 
costs. However, transportation at a very high pressure also means that higher energy 
consumption is needed to achieve the required compression and also compressor 
equipment of greater size is required, all resulting in higher costs. Another variable involved 
is the number of compressor stations, due to the fact that for a larger number of compressor 
stations there will be lower pressure increase for the same given transport distance. This, on 
the one hand, increases costs since there are more compressor stations, and on the other 
hand, the cost is reduced on account of the pressure drop being diminished. 

When trying to solve the problem mathematically, we find that the number of equations 
describing the problem is lower than the number of unknown values to be defined, thus the 
equation system allows for an infinite number of solutions. Amongst those infinite solutions, 
and with the assistance of cost functions derived from the cost of the components of the 
installation, the optimum project is obtained, by means of the mathematical calculation, 
developed by Lagrange, the mathematician. 

Finally, a set of relatively easy to handle formulas is reached, applicable to many practical 
cases, which allows the definition of variables with their optimum value, and its consequent 
minimum costs.  After adequate analysis is performed, is a function of the pipeline diameter, 
thus: 

 Cost of line pipe, valves and fittings: C1 = f1 (D) 

 Cost of energy (present value) required for compressor stations: C2 = f2 (D) 

 Cost of compressor stations: C3 = f3 (D) 
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 Cost of gas (present value) needed for filling gas pipeline: C4 = f4 (D) 

 Total cost: CT = ft (D) = C1 + C2 + C3 + C4, 

The representation of these functions is shown as follows 

 

CT=C1+C2+C3+C4 

C 

D optimum  
diameter 

minimum 

cost 

C2 

C3 
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As can be seen in the graph, optimum diameter D is obtained, corresponding to the 
minimum cost.  

 

Indeterminate Compressible and Isothermal Flow 

Any long-distance transportation pipeline in general consists of the line pipe, a head end 

compressor station and successive intermediate compressor stations. In each section, the 

pipe will have a maximum operating pressure P1 at the beginning (compressor discharge) 

and a minimum operating pressure P2 at the end of the pipe (suction) due to pressure loss 

caused by the flow. 

It should be noted that the complete development of the mathematical formula and constants 
employs the International System of Units (SI Units). 
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For the purposes of this optimisation calculation, it is assumed that isothermal steady-state 

gas flow1 is established all along the pipe interior. The simplified equation for long pipes 

expressing the mass flow of transported gas is as follows: 

 

 

 


























2

2

2

1

5

i

2
2

2

2

1

5

i

2
2

ρ
P

P
1

RTfL

χPD

16

π
PP

RTfL

χD

16

π
C

1

 

Where: 

 Cρ: mass flow [kg/s] 

 iD  : internal diameter [m] 

 X: number of compressor stations including the head end 

 R : particular constant of gas [J/kg.°K] (corrected with compressibility factor Z) 

 T : equivalent gas temperature to consider it isothermal [°K] 

 f :   friction factor obtained with Moody or Churchill formula  

 L : total length of pipe [m] 

 P1: maximum pressure in pipe interior at inlet [Pa]  

 P2: minimum pressure in pipe interior (at delivery point) [Pa] 

There follows an equation with four unknown quantities, which allows for infinite solutions. 
The question is to select among the infinite solutions the one that will keep the cost of the 
entire facility at a minimum, i.e. the “optimum solution”. To this end, cost functions of all 
items intervening in the installation must be created. As was stated above, installation costs 
are divided into four large groups: cost of pipe C1, cost of energy used in compressor 
stations C2, cost of compressor stations C3, and cost of initial filling gas of pipeline C4. 

 

Determining the equivalent temperature of transported gas 

The equivalent temperature of transported gas (to be applied in the isothermal formula) can 

be determined by the equation2: 

 

                                                           
1 See book “Flow of Fluids through Valves, Fittings and Pipes” –Crane Co Engineering Division, USA. 

2
 Source: 8

th
 International Gas Conference (Stockholm 1961) “The calculations of pipelines and prerequisites for choosing 

optimum gas transmission conditions” Authors: A.V.Alexandrov, B.V. Barabash, I.E.Khodanovich – International Gas Union-
IGU.  

 



 

5 
 




















pCC

LDU

p

t

t e

CC

LDU

tt
t

.

...

1

prom 1

.

...
t 






 

where: 

• t1: gas temperature at  the beginning of the section [°C] 

• tt: soil temperature at the depth of the pipeline [°C] 

• U: heat transfer factor from gas to soil [W/m2. ° C] 

• Cp : gas heat capacity [J/kg. °C] 

• D: outer diameter [mm] 

 

2. Cost Functions 

In order to simplify the mathematical procedure to obtain functions, the total installation cost 
is divided into four large groups of variables. 

 

2.1. Cost of pipeline “C1” 

The cost of the pipeline depends on the cost of materials (i.e. the steel pipe, and the 
corrosion protective insulating, line block valves, various pipe fittings, etc.) and cost of 
installation.  

The latter comprises such wide ranging topics as right of way, engineering, surveying, terrain 
clearing and grading, stringing, joint welding or other method, supports, ditching in case of 
buried pipe, final tests, and all costs related to manpower and equipment required for 
installation activities. By means of a market research study the various costs are obtained as 
a function of the diameter, which for practical purposes is assumed to be linear functions, 
valid within a given interval of diameters 

To obtain this function, C1 = f (D), and for the purposes of a simple formulation, it is useful to 
divide intervening costs in two large groups, one proportional to the weight of the pipe and 
another group proportional to the diameter of the pipe. Thus: 

 

C1 = C11 + C12 

 

C11: Includes costs which are dependent on the pipeline weight, such as pipe material, 
welding and, to some extent, manpower and installation. 
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C12: Includes costs which are dependent on the surface of the pipe such as corrosion 
protective insulating or thermal coating, manpower and right of way and ditching and 
backfilling, as well as  land restoration, etc.  

Also, in both cases maintenance costs of the duct throughout its life cycle must be borne in 
mind. 

 

Fm LeDC  .....1111   

Where:  

 

 K₁₁ = market constant for steel cost [$/N] 

 

 F = specific weight of pipe material [N/m³];  

 Dm = average pipe diameter 






 

2

intDDext
 [m] 

 e = pipe wall thickness [m] 

 L = total length of pipeline [m] 

 

Furthermore, bearing in mind the expression of the strength of thin cylindrical casings 

materials (a formula usually adopted by the standards in force)  

xF
e

DP
ad

2

1  

Where  ad is defined as: allowable stress of material; which is generally the steel yield 

stress of the pipe affected by a safety factor called factor "F" or "design factor", with values 
ranging between 0.8 and 0.4 dependent on the location of the pipeline and the population 
density of the adjacent area, i.e. the so-called "class location unit"3  

 

Factor “KD” 

                                                           
3
  The class location unit it is an area extending 200 meters/quarter mile on either side of the centerline of any continuous 

section of the pipeline of 1600 meters/one mile (see NAG 100 standards, Section 5) or also ANSI/ASME B31.8. 
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In the expressions of cost and flow, the average diameter Dm (in the simplified weight 
formula) and the outer diameter D (in the Barlow formula) and the inner diameter Di (in the 
flow formula) are shown. 

One of these three variables Dm, Di and D has to be removed, which is difficult. To do so, a 
new "variable" of very little variation is created, that is, a "quasi-constant” called KD = Di/D. 

In fact, to avoid developing formulas in three different diameters, it is defined KD = Di/D. that 
is, the ratio of the inner diameter to the outer diameter of the pipe. 

This factor (KD) enables to keep only the outer diameter D in the expression (initially 
estimating the KD  and then checking it), and thus "drag" only one unknown value. 

Where:     
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Cost of installed pipe 

Replacing Dm and e, the expression C₁₁ (the portion of the value of the installed pipe which 
cost is proportional to the steel weight) results in: 

 

 

 

 

 

 

 

 

C12 is a function of the external surface of the pipe and for calculation purposes is assumed 

as a linear function with the external surface of pipe, valid for a given interval of diameters. 

In this cost, the corresponding corrosion protective coating is included with a coefficient of 

K12, and the consequent manpower involved in laying of pipe, ditching, repairs and other 

aspects relative to installation, with a coefficient of K13. 
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• K12: Market constant corresponding to the cost of thermal and/or anti-
corrosive insulation coating per area unit [$/m2]. 

• K13: Market constant corresponding to the cost of pipe installation per 
area unit [$/m²]. 

 

Then the C1 function results in:  

DL π)K(KLγ
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Extra thickness required for Corrosion 

In those cases where gas can cause serious corrosion ("acid" gases basically as a result of 
sulphur compounds - H₂S , mercaptans and organic  sulphides- or CO₂, generally corrosive 
in presence of water), it is advisable to define additional thickness to that resulting from 
pressure calculation (eg, adding 2-3 mm). Clearly, this extra thickness shall not be included 
in the strength calculation (stress), i.e. C11, but certainly it shall be considered when 
calculating the cost of installation C12 . 

The additional weight under extra thickness ec results in: 

 

 

In this case the Cost C1 will be modified as follows: 
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2.2. Cost of power consumption in compressors “C2” 

This cost may be considered as a function of the power required in compressor plants and 
the operating time foreseen for the facility. The figure below shows an approximate curve of 
the variation in energy cost consumption as a function of the gas pipeline diameter D. In 
order to add it to the total costs equation, the rates of power consumption during life cycle 
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should be updated with a convenient rate (present value), since payments are made 
regularly throughout the life of the pipeline. 

The expression employed for calculating Power needed for compressing gas, allowing for an 

isentropic compression, multiplied by a factor reflecting the of said compression, is as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

Where: 

 N = required power (watts) 

 R = Particular constant of gas (includes Z compressibility factor) 




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

KKg

J
 

 T = Gas temperature at suction  K  

 1P = Absolute pressure at the discharge of the compressor plant [Pa] 

 2P = Absolute pressure at the suction of the compressor plant [Pa] 

 X = number of compressor stations along the pipeline (including head end) 

 Zc = medium compressibility factor Zcm = (Z1 + Z2) / 2 and Zc2 suction) 

 

The compressors are operated by engines -which may be either gas alternative motors, 
such as gas turbines or electric motors-. These engines have also their own performance. 
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• K2: Constant for the cost of energy. 

• t :Estimated operation time of the compressor facilities. 

• K02: Cost updating coefficient.  

 

On the basis that energy is paid for “n” periods of time (generally on a monthly basis), 
throughout the total life of the facility, the cost of energy is multiplied by a coefficient that 
allows estimation of the present value of the cost C2. Assuming that energy is paid per 
month, at a due date, the monthly interest rates is i, and the period number (months) is n, 
the value of K02 is:  
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When replacing 2C in the expression of the cost of compression power (considering the 

specific gas constant R is affected by definition of suction compressibility coefficient Zc2), 

2C is: 
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2.3. Cost of compressor stations “C3” 

This cost may be considered as a non-linear function of the compression power including the 

power required to operate the pipeline and the backup power (installed power). Also, the 

cost of ancillary facilities must be included (separation filters, valves, air-coolers, pumping 

systems, flares, etc.), maintenance and / or parts replacement of plant throughout its life.To 

simplify calculations, a valid linear function is assumed within a certain range of powers. 

The approximate curve of said function, is shown below: 
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Where: 

 N = installed power in each compressor [W] 

 K03 = Figure which is, to some extent, independent of compression power, and 
mainly represents “structure” costs related to ancillary facilities and land surface. All 
these costs are indirectly related to installed power [$]. 

 K3 = Market constant for the average power unit cost of compression stations 
(motor units + installed and operating compressors) for the resulting power range 
[$/W]. 
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As the power to be applied on each plant is not known at the beginning, approximate values 
of K03 and K3 are used to test such power. The cost verification (per plant) may be made with 
the following theoretical and practical expression (approximate) obtained as a simple 
regression of market data, once the power involved in each plant is known: 
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NCC 03   

 
Where N is the total power installed on each compressor plant, expressed in Watts and Co a 
market constant [$/ W½] 

 

2.4. Cost of gas required to fill pipeline “C4” 

This cost is a function of the gas rates (and their quality upon being injected into the pipeline) 
required for initial filling that will enable pipe operation, necessary as “working capital”, which 
is added at the start of the project and which in theory would be compensated at the end of 
the estimated life cycle of the project. For this reason the present value of the immobilised 
capital must be considered. 

Clearly, this directly depends on the amount of gas added in, that is to say, the inner pipe 
size (i.e. its diameter) and the transport pressure. 

As stated above, the cost of the gas volume needed to fill in the pipeline is a function of the 
interior size (volume) of the pipe (i.e. its length and inner diameter) and also the transport 
pressure.  

Considering the compression ratios commonly used in gas compression of main pipelines (in 
general these ratios range between 1.3 and 2), such simplified cost. 
The approximate cost of initial filling gas (also called initial "line pack") will be: 
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 which reflects the cost of cubic meter of gas for the 

quality set at the gas pipeline inlet (i.e. treated and conditioned). 

K04 = Coefficient of cost update of immobilised capital during life cycle of gas pipeline, and 

recuperated at the time of closing down, which value may be obtained with the following 

formula: 
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2.5. Total cost of project “CT” 

Having obtained the four cost functions, they are added up to reach the total cost (present 

value) of the project 

CT = C1 + C2+
 C3+

 C4 = f (D) 

The minimum CT is obtained as a derivative of diameter 0




D

CT  and from this the optimum 

diameter is found. The graphic representation of this is to be found in graph of the 

Introduction. 

Theoretical simplification shown to obtain the optimum Diameter, is not possible through a 
direct approach in the proposed calculation scheme because cost functions C1 , C2 , C3 and 
C4 do not result from the function of a single variable to be optimised “D”, but are functions of 
several variables. 

In this case, the actual possibility of finding an optimum is directly related to the method 
employed. In order to optimise several variables subject to technical conditionings, the 
Lagrange Multiplier rule or “conditioned maximum and minimum values” is employed, the 
mathematical rigor of which requires no further justification. The mathematical formulation of 
the optimisation problem raised is explained below. 

The full expression of CT for a pipeline system is the following: 
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To achieve optimisation, the objective is searching the “minimum” of CT function (i.e. the 
minimum cost of installing and operating the pipeline system) subject to the function of 
pressure loss for isothermal compressible flow at steady state. 
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3. Variable Optimisation 
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variable parameters Diameter: D, Maximum operation pressure: P1, Compression Ratio: 
P1/P2 for the compressor stations, and number of compressor stations on the line:  ; all of 

them conditioned by the isothermal flow equation for steady regime: 

 

 

 

 

 

 

 

Using the Lagrange Multiplier Method the optimum values are obtained, as shown below: 
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In the case of gas transmission systems, the unknown expressions to obtain are: 
 

 D :Outer pipe diameter 

 1P : Maximum operating pressure of the pipe 

 1P / 2P  : Compression ratio 

  : Number of compressor plants, including the head end. 

 

We have obtained four equations applying LaGrange’s method, which together with the 
border condition equation conforms a five equation systems with five unknown values. 

By solving the equation system (removing λ, the Lagrange variable), the following 
expressions are obtained: 
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To begin solving the case, from equation (I) the compression ratio 
2

1

P

P
is obtained; then with 

this pressure equation ratio (II) the outer diameter D is obtained. Afterwards, from equation 

(III) the pipe maximum pressure 1P  is obtained and from equation (IV), the number of 

compressor stations (including head end) is obtained. 

During the above-explained solving cycle, the factor (KD), the friction factor ƒ, the cost 

constants K₃ and K₀₃ which depend on the resulting power, etc. must be checked, all of them 

adopted at the beginning of the calculation process. 

It should be noted that the outer diameter was chosen for the purposes of optimisation (to 

avoid "dragging" more variables). The outer diameter D and pressure P make feasible to 

calculate theoretical thickness and inner diameter. In this same manner, the inner diameter 

may be inferred with the coefficient KD and the outer diameter. 

Proceeding thus, it is possible to determine the four sought variables which bring the total 
cost of the project to a minimum value and are therefore referred to as theoretical “optimum”. 

Knowing now the calculated optimum variables, the pipe wall thickness can be then 
calculated with Barlow’s formula (ANSI B31.8): 

ad

DP
e

2
1  

The allowable stress ad is obtained from the yield stress f of the material affected by 

safety factor K5 (ranging between 0.8 and 0.4) usually established in the specifications by 
the product of the Design Factor F which takes into account safety standards (class location 
units based on population density), type of pipe construction (Factory-Made Welding 
Efficiency Factor E), operating conditions (Temperature Factor T), among others: 
 

fad TEF  ...  

 

The results arise from a mathematical optimisation; the approach to commercial or 
regulatory values poses a new optimisation in terms of variables of common or standardized 
use (eg, "commercial" outer diameters of pipes), discrete variables (entire number of 
compressor plants), or depending on present regulations (restrictions on maximum operating 
pressures), usually achieved by a series of detailed calculations of the pipeline being 
projected. 

For pipe diameter D, the closest calculated optimum diameter, either larger or smaller, 
should be selected within the standardized series. 
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If the theoretical Optimum Diameter is larger than the possible ordinary manufacturing pipes, 
the project is divided into two parallel pipes with half the flow each and the optimum 
variables are recalculated. 

 

Methodology of "Practical" Adjustment of the OPTIMISATION Variables 

Considering that from the theoretical formulation, the variables D and P₁ as well as 
theoretical thickness are obtained, commercial or manufacture standard dimensions must be 
selected. It may be called practical or trade adjustment of the results. Same operations must 
be conducted on the result of X, i.e. the number of plants, which must be a discrete number. 

Therefore, for the practical resolution of a pipeline design under the method of optimisation 
the following logical sequence must be followed: 

 

1) Solve successfully the complete equations to obtain P1; X; D and P₁/P₂ (the 

adopted KD ratio, the friction factor and cost constants K₀₃ and K3 of the 
compression plant must be proved). 

2) Based on the theoretical optimum Diameter D, select the largest and the smallest 
commercial diameter. 

3) Based on the “non-integer” number of X compressor stations, select the largest and 
smallest integer number. 

4) Define different projects by selecting the one of largest diameter and fewest number 
of compressor plants and vice versa, and one of largest diameter and largest 
number of plants and vice versa. 

5) Calculate pressure losses of a L/X section for the above-mentioned commercial 
alternatives, applying isothermal steady flow equation (in each D and X case). In 
this way, the compression ratio P1/P2 will be found for each case, using the P1 
obtained from resistant calculation obtained for the selected thickness. 

 
6) For all cases (with each commercial diameter, P1 , P2 and X integer) with the 

expressions of initial cost, calculate the total cost of each alternative and select as 
the optimum alternative that one with the lowest cost or, under similar solutions in 
terms of cost, select the one which best meets any additional requirement for the 
requested purposes. 

 

 

7) Finally solve the selected optimum alternative by "small sections" (segments) and 
adjust the location of compressor stations in order to have similar power in all 
compressor plants (i.e. achieving similar compression ratios in all compressor 
plants). 
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Final adjustment of the variables for the projected system 

It should be mentioned that the "optimum" calculation is an estimate (to solve the economic 
problem); then the fluid dynamics system response must be accurately checked. 

Once the variables are defined according to any possible practical restrictions for the 
selected "commercial" project, a detailed calculation (by small pipe sections or segments) 
shall be conducted, through appropriate programming of finite difference type (usually a 
steady state formulation considering heat transfer and then transient behavior checking) to 
verify the project parameters and define accurately the operation conditions and restrictions 
for the different components of the projected pipeline. 

 

4. Practical interpretation of obtained values 

The obtained results follow a mathematical OPTIMISATION. The adoption of commercial or 
regulatory values gives way to a new cycle of OPTIMISATION possibilities in terms of 
commonly used or standardised variables (e.g. outer diameters of pipes), discrete variables 
(number of compressor stations), or dependant of regulations in force (maximum operating 
pressure), that is normally achieved through a series of detailed calculations of the gas 
pipeline system being designed. 

Maximum pressure P1 

If due to safety reasons of for technological limitations the optimum pressure P1 (or its 

equivalent e/D ratio) cannot be reached, the maximum possible pressure value will be 

adopted. If this maximum pressure differs greatly from the optimum value, a new 

OPTIMISATION round should be carried out, setting the possible pressure P1 and looking 

for the optimum values of diameter D, the compression ratio 



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Then, practical alternatives are developed as above-explained, closing the complete 
optimisation calculation. 
 
 

 

5. Conclusions 

As shown when approaching the problem, the first step is to carry out a market research in 
order to obtain all the costs of the required components (materials, manpower, and 
equipment) that intervene in the facility, and then carry out a mathematical trend fitting to 
arrive at a cost. 

Then, with the total cost function, the minimum cost within the border conditions set as per 
the flow equation (isothermal flow equation) is searched. This is done by using the Lagrange 
Multiplier Method, thereby finding the required solutions 

Finally, optimum values have to be adjusted to practical parameters, that is diameter, 
maximum operation pressure and compression ratio for the compressor stations. 

The proposed methodology strives to comply with the requirements of information, rationality 
and effective calculations possibilities, since most of the data used is already in the 
databases usually available in companies, even if some costs might eventually call for some 
limited market research. 

Given the utmost importance that the gas pipeline networks have for the gas industry as a 
whole, all the effort put into achieving a greater economic rationale when designing a new 
system will never be too much. 

The contents of this document are not the first approach to the subject4. The 
OPTIMISATION methods in the gas and oil industry in general, and in the fluid transportation 
field go back a long time. However, this new way of looking at this problem is an updated 
mathematical review, basically in the number of variables that are simultaneously optimised. 
The scope could be easily extended to different types of fluid transmission systems (crude 
oil lines, multi-product lines, water mains, slurry lines, etc.) and suited to local conditions 
regarding units, standards, usual values, etc. 
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